Afrikaans Afrikaans Albanian Albanian Amharic Amharic Arabic Arabic Armenian Armenian Azerbaijani Azerbaijani Basque Basque Belarusian Belarusian Bengali Bengali Bosnian Bosnian Bulgarian Bulgarian Catalan Catalan Cebuano Cebuano Chichewa Chichewa Chinese (Simplified) Chinese (Simplified) Chinese (Traditional) Chinese (Traditional) Corsican Corsican Croatian Croatian Czech Czech Danish Danish Dutch Dutch English English Esperanto Esperanto Estonian Estonian Filipino Filipino Finnish Finnish French French Frisian Frisian Galician Galician Georgian Georgian German German Greek Greek Gujarati Gujarati Haitian Creole Haitian Creole Hausa Hausa Hawaiian Hawaiian Hebrew Hebrew Hindi Hindi Hmong Hmong Hungarian Hungarian Icelandic Icelandic Igbo Igbo Indonesian Indonesian Irish Irish Italian Italian Japanese Japanese Javanese Javanese Kannada Kannada Kazakh Kazakh Khmer Khmer Korean Korean Kurdish (Kurmanji) Kurdish (Kurmanji) Kyrgyz Kyrgyz Lao Lao Latin Latin Latvian Latvian Lithuanian Lithuanian Luxembourgish Luxembourgish Macedonian Macedonian Malagasy Malagasy Malay Malay Malayalam Malayalam Maltese Maltese Maori Maori Marathi Marathi Mongolian Mongolian Myanmar (Burmese) Myanmar (Burmese) Nepali Nepali Norwegian Norwegian Pashto Pashto Persian Persian Polish Polish Portuguese Portuguese Punjabi Punjabi Romanian Romanian Russian Russian Samoan Samoan Scottish Gaelic Scottish Gaelic Serbian Serbian Sesotho Sesotho Shona Shona Sindhi Sindhi Sinhala Sinhala Slovak Slovak Slovenian Slovenian Somali Somali Spanish Spanish Sundanese Sundanese Swahili Swahili Swedish Swedish Tajik Tajik Tamil Tamil Telugu Telugu Thai Thai Turkish Turkish Ukrainian Ukrainian Urdu Urdu Uzbek Uzbek Vietnamese Vietnamese Welsh Welsh Xhosa Xhosa Yiddish Yiddish Yoruba Yoruba Zulu Zulu

Alternative Energy Development in Japan

Japan is a densely populated country, and that makes the Japanese market more difficult compared with other markets. If we utilize the possibilities of near-shore installations or even offshore installations in the future, that will give us the possibility of continued use of wind energy. If we go offshore, it's more expensive because the construction of foundations is expensive. But often the wind is stronger offshore, and that can offset the higher costs. We're getting more and more competitive with our equipment. The price—if you measure it per kilowatt-hour produced—is going lower, due to the fact that turbines are getting more efficient. So we're creating increased interest in wind energy. If you compare it to other renewable energy sources, wind is by far the most competitive today. If we're able to utilize sites close to the sea or at sea with good wind machines, then the price per kilowatt-hour is competitive against other sources of energy, go the words of Svend Sigaard, who happens to be president and CEO of the world's largest wind turbine maker, Vestas wind systems out of Denmark. Vestas is heavily involved in investments of capital into helping Japan expand its wind turbine power generating capacity. It is seeking to get offshore installations put into place in a nation that it says is ready for the fruits of investment into alternative energy research and development.

The Japanese know that they cannot become subservient to the energy supply dictates of foreign nations—World War II taught them that, as the US decimated their oil supply lines and crippled their military machine. They need to produce energy of their own, and they being an isolated island nation with few natural resources that are conducive to energy production as it is defined now are very open to foreign investment and foreign development as well as the prospect of technological innovation that can make them independent. Allowing corporations such as Vestas to get the nation running on more wind-produced energy is a step in the right direction for the Japanese people.

The production of energy through what is known as microhydoelectric power plants has also been catching on in Japan. Japan has a myriad rivers and mountain streams, and these are ideally suited places for the putting up of microhydroelectric power plants, which are defined by the New Energy and Industrial Technology Development Organization as power plants run by water which have a maximum output of 100 kilowatts or less. By comparison, “minihydroelectric” power plants can put out up to 1000 kilowatts of electrical energy.

In Japan, the small-scaled mini- and micro-hydroelectric power plants have been regarded for a considerable time as being suitable for creating electricity in mountainous regions, but they have through refinement come to be regarded as excellent for Japanese cities as well. Kawasaki City Waterworks, Japan Natural Energy Company, and Tokyo Electric Power Company have all been involved in the development of small-scale hydroelectric power plants within Japanese cities.

JV Blogs Visit free hit counter